

# higher education & training

Department:
Higher Education and Training
REPUBLIC OF SOUTH AFRICA

### NATIONAL CERTIFICATE MATHEMATICS N3

(16030143)

20 November 2019 (X-Paper) 09:00–12:00

Programmable calculators are NOT allowed.

This question paper consists of 7 pages and a formula sheet of 2 pages.

Copyright reserved

### DEPARTMENT OF HIGHER EDUCATION AND TRAINING REPUBLIC OF SOUTH AFRICA

## NATIONAL CERTIFICATE MATHEMATICS N3 TIME: 3 HOURS

MARKS: 100

. .

#### INSTRUCTIONS AND INFORMATION

- 1. Answer ALL the questions.
- 2. Read ALL the questions carefully.
- 3. Number the answers according to the numbering system used in this question paper.
- 4. Questions may be answered in any order, but keep sub sections together.
- 5. Show ALL calculations and intermediate steps.
- 6. ALL graph work in the question paper must be done in the ANSWER BOOK.
- 7. ALL final answers must be accurately rounded off to THREE decimals.
- 8. Diagrams are NOT drawn to scale.
- 9. Write neatly and legibly.

Copyright reserved

#### **QUESTION 1**

1.1 Factorise the following as far as possible in prime factors:

$$16x^2 + 4y - y^2 - 4$$
 (4)

Determine the value of 
$$p$$
 if  $f(x)=2x^2+px-5$  gives a remainder of 6 when divided by  $2x+1$  (5)

1.3 Simplify the following expression:

$$\frac{m^2 + m - 2}{3m^2 - 2m - 1} - \frac{2m^2 + m - 6}{9m^2 + 6m + 1} \times \frac{4m - 12}{3m + 1}$$
(5)

#### **QUESTION 2**

2.1 Solve for x:

2.1.1 
$$\ln(1-2x) - \ln(x+2) = 0$$

$$2.1.2 \qquad \log_b x = \frac{3}{\log_5 b}$$

$$(2 \times 3) \qquad (6)$$

2.2 Simplify the following expressions:

2.2.1 
$$\frac{\sqrt{x} - \frac{1}{\sqrt{x}}}{\sqrt{x} + \frac{1}{\sqrt{x}}} \times \frac{x+1}{2x-2}$$

$$(4)$$
2.2.2 
$$\frac{(a+b)^{\frac{3}{2}}}{(a-b)^{\frac{1}{2}}} \times \sqrt{(a^2-b^2)}$$
(3)
[13]

Copyright reserved

#### **QUESTION 3**

The perimeter of a rectangle is 18 cm and the length of its diagonal is  $3\sqrt{5}$  cm.

Determine the dimensions of the rectangle.



(6)

Make n the subject of the following:

$$S = \frac{a(r^n - 1)}{r - 1} \tag{4}$$

3.3 Solve for x by completing the square:

$$x^2 + 5x - 3 = 0$$

(5) [**15**]

#### **QUESTION 4**

Consider FIGURE 1 below.  $\triangle$ ABChas the vertices A(7;5), B(5;-1) and C(9;-1). P is the midpoint of AB. Let the angle of inclination of AC be  $\theta$  and the angle of inclination of AB be  $\beta$ .



FIGURE 1

Determine:

4.1 The co-ordinates of P the midpoint of AB.

(2)

4.2 The gradient of lines AC and AB

(4)

Copyright reserved

- 4.3 The size of BAC (3)
- The equation of the line that passes through point A which is perpendicular to AC.

  Leave the answer in the gradient-intercept form. (3)
  - **A** (5)
- 4.5 Show that triangle ABC is an isosceles triangle.

#### [17]

#### **QUESTION 5**

- Sketch the graph of  $16x^2 + 100y^2 = 400$  in the ANSWER BOOK. All values at the points of intersection with axes must be shown. (3)
- Determine  $\frac{dy}{dx}$  of  $y = (\sqrt{x} 4)^2$  by means of using rules of differentiation.
  - Leave the final answer with positive exponents and in surd form where applicable. (5)
- 5.3 Consider the following function:  $f(x) = \frac{1}{3}x^3 \frac{1}{2}x^2$ 
  - 5.3.1 Make use of differentiation to determine the co-ordinates of the turning points of f(x) (5)
  - 5.3.2 Calculate the x and y -intercepts of f(x) (3)
  - 5.3.3 Hence, sketch the graph of f(x) and show the calculated values in QUESTION 5.3.1 and QUESTION 5.3.2 on the graph. (4) [20]

#### **QUESTION 6**

6.1 Use basic trigonometric identities to prove that:

$$\cot x = \frac{2\sin^2 x}{2\tan x - 2\sin x \cos x} \tag{6}$$

Copyright reserved

FIGURE 2 represents  $\triangle ABC$ . Determine the size of the acute angle BAC if the area of  $\triangle ABC = 6\sqrt{3} \text{ m}^2$ , b = 8 m and c = 3 m.



Consider FIGURE 3 which represents  $\triangle PQR$ . RS = 10 m,  $P\hat{S}Q = 68^{\circ}$  and  $P\hat{R}S = 40^{\circ}$ 



FIGURE 3

Determine:

6.3.1 The length of PS



6.3.2 The length of PQ

 $(2\times3) \qquad (6)$ 

Copyright reserved

#### 8. Trigonometry

$$sin\theta = \frac{y}{r} = \frac{1}{cosec\theta}$$

$$cos\theta = \frac{x}{r} = \frac{1}{sec\theta}$$

$$tan\theta = \frac{y}{x} - \frac{1}{cot\theta}$$

$$sin^2\theta + cos^2\theta = 1$$

$$1 + tan^2\theta = sec^2\theta$$

$$1 + cot^2\theta = cosec^2\theta$$

$$tan\theta = \frac{sin\theta}{cos\theta}$$

$$cot\theta = \frac{cos\theta}{sin\theta}$$

$$\frac{sin A}{a} = \frac{sin B}{b} = \frac{sin C}{c}$$

$$a^2 = b^2 + c^2 - 2bc cosA$$
Area of  $\triangle ABC = \frac{1}{2}ac \sin B$ 

Copyright reserved

Given: The equations of the graphs  $f(x) = 2\cos x$  and  $g(x) = 4\sin x - 2$ . 6.4



Draw the graph of the given equations on the same set of axes for 6.4.1  $0^{\circ} \le x \le 180^{\circ}$ . Show all intercepts on the axes and the co-ordinates of all turning points.

(5)

Read, from the sketch, the value(s) of x for which f(x) - g(x) for 6.4.2  $x \in [90^{\circ}; 180^{\circ}]$ 

(1) [21]

TOTAL:

Copyright reserved

#### **MATHEMATICS N3**

#### FORMULA SHEET

Any applicable formula may also be used.

1. Factors

$$a^{3} - b^{3} = (a - b) (a^{2} + ab + b^{2})$$
$$a^{3} + b^{3} = (a + b) (a^{2} - ab + b^{2})$$

3.

#### uadratic formula

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

#### 4. Parabola

$$y = ax^{2} + bx + c$$

$$y = \frac{4ac - b^{2}}{4a}$$

$$x = \frac{-b}{2a}$$

2. Logarithms

$$\log ab = \log a + \log b$$

$$\log \frac{a}{b} = \log a - \log b$$

$$\log_b a = \frac{\log_c a}{\log_c b}$$

$$log a^m = m log a$$

$$\log_b a = \frac{1}{\log_a b}$$

$$log_a \ a = 1 : 1n \ e = 1$$

$$a^{log_a t} = t : e^{ln m} = m$$

#### 5. Circle

$$x^2 + y^2 = r^2$$

$$D = \frac{x^2}{4h} + h$$

$$x = \sqrt{4Dh - 4h^2}$$

$$6. Straight line y - y_1 = m(x - x_1)$$

Perpendicular:  $m_1 \cdot m_2 = -1$ 

Parallel lines:  $m_1 = m_2$ 

Distance: 
$$D = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Midpoint: 
$$P = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$

Angle of inclination:  $\theta = tan^{-1}m$ 

#### 7. Differentiation

$$\frac{dy}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$\frac{d}{dx}\left(x^n\right) = nx^{n-1}$$

Max/Min

For turning points: f'(x) = 0